ACCUEIL

Consignes aux
auteurs et coordonnateurs
Nos règles d'éthique
Autres revues >>
European Journal of Economic and Social Systems
1292-8895
Parution abandonnée
 

 ARTICLE VOL 17/1-2 - 2004  - pp.11-28
TITLE
Artificial Neural Networks for Energy Management System Applicability and Limitations of the Main Paradigms

ABSTRACT
The practical applicability and limitations of the main neural paradigms is revised by studying three main questions: when can a particular problem be approached by means of Artificial Neural Networks? Which is the most suitable neural paradigm for a particular problem? How must the available information be presented to the implemented network? As a case of study, three operations involved in an Energy Management System, instances of general problems often solved by neural networks, have been considered: Load Forecasting, State Estimation and Contingency Analysis. The analysis of the attempted neural solutions brings to light the features and limitations of the main neural paradigms, such as Multilayer Perceptrons with Backpropagation, Radial Basis Function networks, Hopfield networks and Self-Organising Maps.


AUTEUR(S)
Gonzalo JOYA, Francisco GARCÍA-LAGOS, Miguel A. ATENCIA, Francisco SANDOVAL

KEYWORDS
Artificial Neuronal Network, Energy Management System, Neural Paradigms Applicability, Input Selection

LANGUE DE L'ARTICLE
Anglais

 PRIX
• Abonné (hors accès direct) : 25.0 €
• Non abonné : 50.0 €
|
|
--> Tous les articles sont dans un format PDF protégé par tatouage 
   
ACCÉDER A L'ARTICLE COMPLET  (254 Ko)



Mot de passe oublié ?

ABONNEZ-VOUS !

CONTACTS
Comité de
rédaction
Conditions
générales de vente

 English version >> 
Lavoisier